

NPS-CS-08-011

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: Missile Defense Agency
 7100 Defense Pentagon
 Washington, D.C. 20301-7100

A Comparison of Priority-based and Incremental Real-
Time Garbage Collectors In the Implementation of the

Shadow Design Pattern

 by

T.W. Otani, D. Drusinsky, J.B. Michael and M. Shing

15 August 2008

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President

and Provost

This report was prepared for and funded by the Missile Defense Agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Thomas Otani
Associate Professor of Computer Science
Naval Postgraduate School

Reviewed by: Released by:

________________________ _______________________
Peter J. Denning, Chairman Dan C. Boger
Department of Computer Science Interim Vice President and

Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

 v

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 2008

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE: Title (Mix case letters)
A Comparison Of Priority-Based And Incremental Real-Time Garbage
Collectors In The Implementation Of The Shadow Design Pattern

6. AUTHOR(S) Thomas W. Otani, Doron Drusinsky, James Bret Michael,
and Man-Tak Shing

5. FUNDING NUMBERS

MD7080101P0630

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER NPS-CS-08-011

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Missile Defense Agency, 7100 Defense Pentagon, Washington, DC 20301-7100

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This is our third report on real-time Java. Our previous work to develop and evaluate the Shadow Design
Pattern was couched in the context of real-time garbage collection with assignable priorities as implemented
for example in the Sun Java Real-Time System. In this report, we present our investigation of the pattern from
the perspective of non-assignable priorities. Our experiment consisted of running the real-time application we
used in our previous study on IBM WebSphere Real Time. IBM WebSphere Real Time automatically sets
Metronome, its incremental real-time garbage collector, to a priority higher than the highest priority of the
real-time threads that use the heap. The results from the experiment show that the modified code for the
Shadow Design Pattern runs well under Metronome.

15. NUMBER OF
PAGES

25

14. SUBJECT TERMS
Real-time system, Java programming language, Garbage collection, Design pattern.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

1. Introduction

Writing a correct real-time Java program with the no-heap real-time threads can
be difficult [1-3]; the use of no-heap real-time threads involves a complex programming
model that is difficult to understand and hard to analyze [4-7]. In [8], we concluded that it
is preferable to use only the regular, heap-using real-time threads for a class of real-time
applications whose computations must be terminated by their hard deadlines and have to
return the best approximations to their clients if they cannot finish their computations by
the deadlines; we developed a new design pattern, called the Shadow Design Pattern, for
this class of applications. We described how well this design pattern works with the Sun
Java Real-Time System (RTS) 2.0 in [9]. The key feature that makes the Shadow Design
Pattern successful is the availability of the real-time garbage collector (RTGC) whose
priority is assignable.

Since not all RTSJ implementations support such priority-assignable RTGC, our

next task is to determine the effectiveness of the Shadow Design Pattern when it is used
with other types of RTGC, namely the incremental RTGC with non-assignable priorities.
In this paper, we describe the experiment we performed by running the Shadow Design
Pattern on the IBM WebSphere Real Time that includes the real-time garbage collector
called the Metronome. Unlike the Sun RTGC, we cannot change the priority of the
Metronome RTGC. Metronome is set to run at a priority 0.5 higher than the highest
priority of the RealtimeThread thread. We present a comparison of the two kinds of
RTGCs regarding their suitability to support the Shadow Design Pattern.

The rest of the report is organized as follows. Sections 2, 3 and 4 describe the

Shadow Design Pattern and the two kinds of RTGCs. Section 5 describes the experiment
we performed on the Sun Java RTS 2.0 and the modifications made to the code for it to
run correctly on IBM WebSphere Real Time. Sections 6 and 7 present our findings and
conclusions, respectively.

2. The Shadow Design Pattern

The Shadow Design Pattern is a Java real-time design pattern for applications in
which the goal of conforming to real-time constraints is more important than the
computation of ultra-accurate numeric results. The pattern creates two threads per task, a
refined, or accurate, computation and a coarse, or nominal, computation.

For easy reference, we will describe briefly in this section our Shadow Design

Pattern for real-time applications reported in [9, 10], which is defined by the following
two key features:

• Real-time threads are divided into two groups, with the threads in the first group

having a priority higher than the one assigned to the RTGC and the threads in the
second group having a priority lower than the one assigned to the RTGC.

 2

• In case the set deadline is missed, a predetermined or approximate value (e.g., via

table-lookup or most recent value of the approximation) is used as the result of the
computation.

Figure 1 shows the participants of the design pattern and Figure 2 shows the

interactions among the participants.

Figure 1. Participants of the Shadow Design Pattern

Front

Shadow

Control
Deadline

Timer Miss
HandlerRTGC

Priority

Figure 2. Interaction Among the Participants

The RealtimeThread, OneShotTimer and AsyncEventHandler are Java Real-time

API Standard classes. The Control object is the main controller of the program. It creates
the Front objects to carry out the time-constrained computations, and it destroys the Front
objects when the computation is completed. The Front object in turn creates the Shadow
object to carry out the detailed computations, a OneShotTimer object (with its duration
equal to the deadline) to monitor the execution time of the computation performed by the
Shadow object, and a DeadlineMissHandler object to perform the asynchronous transfer
of control in case the Shadow object misses its deadline. The Front object then keeps
track of updates from the Shadow object, and reports either the full result or the nominal
result to the Control object when either the reportFinal() is called by the Shadow object

 3

or the reportNominal() method is called by the DeadlineMissHandler object.

The key requirement of the Shadow Design Pattern is that only the non-time-
critical shadow threads consume unbounded amounts of memory in the heap. The time-
critical front threads, which are responsible for the approximate solution, can only
consume heap memory with known upper bounds on the maximum heap usage and the
heap mutation rate (e.g., only performing simple table-lookup or keeping track of
intermediate results using a fixed number of data objects), and the approximate solution
must be obtainable in time strictly less than the deadline.

3. The Priority-based RTGC

A defining characteristic of a priority-based RTGC is the ability to adjust the
priority of RTGC. By being able to adjust the RTGC priority, we can dictate the relative
priority of the application threads. For a time-critical thread (that uses a heap), we can set
its priority higher than the one assigned to the RTGC, so it will not be interrupted under
normal execution. Such time-critical threads will only get interrupted when the amount of
free memory goes below a certain threshold. At that point, RTGC preempts the time-
critical thread in order to collect the garbage; this is achieved by temporarily increasing
the priority of RTGC to a value higher than the one assigned to the time-critical thread.

The Sun Java RTS 2.0 supports a priority-based RTGC. By specifying the values

for the runtime parameters RTGCCriticalPriority and RTGCCriticalReservedBytes, the
programmer can control the behavior of the Sun RTGC.

3.1 RTGCCriticalPriority

The RTGCCriticalPriority runtime parameter is most significant in the Sun Java
RTS 2.0 for ensuring the determinism of time-critical threads. A thread with the assigned
priority higher than RTGCCriticalPriority is called the time-critical thread. The RTGC
starts running at RTGCNormalPriority (whose default value is the minimum priority for
the real-time threads). The auto-tuning mechanism attempts to start RTGC soon enough
so that the garbage collection completes before reaching the memory threshold
(RTGCCriticalReservedBytes), which will result in bumping up the priority of RTGC to
RTGCCriticalPriority.

 4

Figure 3. Classification of thread priorities

3.2 RTGCCriticalReservedBytes

To aid the RTGC in ensuring the deterministic behavior of all the time-critical
threads, the programmer needs to specify the second runtime parameter
RTGCCriticalReservedBytes (the default value is 0). When the free memory becomes
less than the value set for the RTGCCriticalReservedBytes, the RTGC runs at the
RTGCCriticalPriority, using all CPU cycles not used by the time-critical threads. This
prevents all other threads (non-time-critical real-time threads and non-real-time threads)
from allocating CPU cycles and memory, and causes them to be blocked. It is important
to be aware that time-critical threads with a higher priority can still get blocked by the
lower priority RTGC if there is not enough memory for the time-critical threads to run. In
general, we want to set the RTGCCriticalReservedBytes just high enough to ensure that
the time-critical threads do not get preempted by the RTGC due to lack of free memory.
If RTGCCriticalReservedBytes is set too high, the RTGC will run more frequently,
thereby preventing the lower priority threads from running. This will reduce the overall
throughput. On the other hand, if we set it too low, then the deterministic behavior of
time-critical threads can be compromised.

4. The Incremental RTGC

With a standard garbage collection, the complete activity is executed as a single
process. During the garbage collection process, the application threads are suspended. As
a consequence, an application program can be paused for a relatively long period of time.
The length of this pause can be tolerated in non-real-time applications, but in real-time
applications, the length of the pause time is critical to producing correct results.

Instead of running the garbage collection as a single process, it can be executed in

a piecemeal fashion; this is known as incremental RTGC. For example, instead of
running a garbage collector for 10 ms to complete the whole collection, we can run it ten
times with each execution taking 1 ms. This piecemeal execution will result in pausing
the application program for 1 ms instead of 10 ms.

The real-time garbage collector included in IBM WebSphere Real Time is called

 5

Metronome, which is an incremental RTGC. A detailed technical description of
Metronome can be found in [11]. One key difference between Sun’s RTGC and
Metronome is the ability to assign a priority to Sun’s RTGC. The priority of Metronome
is set by the system to be 0.5 higher than the highest priority real-time thread that uses
heap memory.

4.1 targetUtilization

To fine tune Metronome, we can specify a number of runtime options. The most
important one is the CPU utilization target. For example, the following command

java -Xrealtime -Xgc:targetUtilization=80 <myapp>

makes the application <myapp> run 80% of the time every 10 ms and the remaining 20%
of the time is used by Metronome for garbage collection.

Metronome supports two types of garbage collection. The first is called the
heartbeat, which is an incremental garbage collector. The second is called the synchgc,
which is a standard synchronous garbage collector that stops the application until it
completes the garbage collection. The synchronous garbage collection takes place under
extreme conditions, such as when the heap memory is almost exhausted. We need to fine
tune the application used in our experiment to avoid triggering synchgc.

5. The Experiment

The Shadow Design Pattern is motivated by the availability of priority-based
garbage collectors, such as the one provided by the Sun Java RTS. The key aspect of the
design pattern is that only the Shadow objects have the priority lower than the priority of
the garbage collector (GC), and they are the only ones that may consume an uncertain
amount of memory in the heap. The Front objects and others with the higher priority will
not be interrupted by the GC.

We created a small test program (shown in Appendix A) to test the viability of the

design pattern on a Sun BladeTM 2500 workstation (with a 1.6-GHz UltraSPARC IIIi
processor with 1 MB of Level 2 cache, and 2GB RAM). For easy reference, we duplicate
the description of our experiment we reported in [9] here.

 The Control is implemented as a RealtimeThread and its run method is defined as
follows:

public void run() {
 for (int i = 0; i < N; i++) {
 DataItem node = new DataItem(i);
 front[i] = new Front(this, i, node);
 frontCnt++;
 }

 6

 for (int i = 0; i < N) {
 front[i].start();
 /* Point A - Place delay here */
 }
}

We are using an array to keep track of the front threads. Every index position of

this array is a non-null value as it points to an instance of the Front class. When a front
finishes its computation, it calls the Control’s workDone() method to report the
completion of the assigned task. This will result in setting the corresponding index
position to null, thereby turning the used heap memory into garbage.

At Point A in the code, we can place a time delay after a front is started. Placing

no delay means the program will run all front threads simultaneously. This could lead to
an OutOfMemory exception when N, the total number of fronts, becomes larger than a
certain threshold. The reason is that the priority of Control is higher than the one for
RTGC. As Control creates and starts more and more fronts, memory gets consumed but
there is no garbage to collect because there is no index position in the array that is set to
null. In other words, the front threads never have a chance to call the Control’s
workDone() method.

If we insert some delay at Point A in the code, then it becomes possible for the

fronts to call the Control’s workDone() method to turn both themselves and memory
allocated by the corresponding shadows into garbage for the RTGC to collect.

A front thread performs the computation on a given data item. The actual

computation is done by its associated shadow thread. When the computation is complete,
the shadow calls its controlling front’s reportFinal() method to report the full result,
which will, in turn, cause the front to invoke the Control’s workDone() method.

The deadline is set by designating the time duration (RelativeTime that specifies

the time duration such as 2 ms) using a OneShotTimer. When the time is up, its
associated asynchronous event handler DeadlineMissHandler calls the front’s
reportNominal() method to report the nominal result, which will, in turn, cause the front
to invoke the Control’s workDone() method.

The front can get the result in two ways. The first is the full result, that is, the

actual computation result received from its shadow via the reportFinal(). In this case, the
OneShotTimer object is killed. The second is the nominal result. This result is used when
the timeout occurs. In this case, the associated shadow object is killed.

With Metronome, these real-time threads (Control, Front, and all others) can be

interrupted by the garbage collection activity. Two questions we need to ask are:

1. Would the Shadow Design Pattern continue to work properly under Metronome?

 7

2. What would be the performance differences? Would the number of timeouts
increase or decrease under Metronome?

To answer these questions, we ran the test program reported in [9] on IBM

WebSphere Real Time.

5.1 ADAPTING THE TEST PROGRAM FOR METRONOME

We used the following hardware and software for running the experiement on

IBM WebSphere Real Time:

• Hardware: LS20 Blade, 2 x Dual Core AMD Opteron(tm) Processor 275 @ 2.2-

GHz, 8GB RAM. Bios: BKE123FUS-1.25. Model/Type: 885055U

• Operating System: IBM Real-Time Linux R1-SR2-GA (r868)

• Java Real-time System: IBM RealTime JVM (ibm-ws-rt-sdk-1.0-1.0-linux-i386.tgz)

The fixed-priority assignment of Metronome has occasionally caused null pointer
exceptions in the Java program we used in our previous experiments with the Sun Java
RTS. We observed this behavior with the following run method of the Front class in the
original code:

 public void run() {
 shadow = ...;
 timer = ...;
 timer.start();
 shadow.start();
 }

We start the timer and then the shadow. This sequence works fine with Sun’s

RTGC because the priority of front is higher than the priority of GC, so this run method
does not get interrupted by the GC.

With the Metronome GC, this sequence of execution can lead to a problem, that

being an occurrence of a NullPointerException. Because the Front object is running in a
priority lower than the one for the Metronome, it is possible that the set deadline is
missed before this run method has a chance to start the shadow. Since the deadline is
missed, the reportNominal() method of the Front object is called by the
DeadlineMissHandler. Here is the portion of the reportNominal() method:

 public synchronized void reportNominal() {
 ...
 shadow = null;
 timer = null;
 timeOutHandler = null;

 8

 ...
 }

The variables are set to null so the garbage collector can reclaim garbage later.

When the reportNominal() is called before the shadow.start() is executed, we get a
NullPointerException because by the time the statement

 shadow.start();

of the run method gets executed, the variable shadow was already reset to null in the
reportNominal() method.

The occurrence of this anomaly is not frequent, but such an exception should
never happen. Garbage collection activity is certainly one possible cause of the run
method being interrupted, but it is not the only cause. It is possible for the method to be
interrupted by the normal thread scheduling; this is confirmed in one execution where
there was no garbage collection activity, but the NullPointerException still happened.

Switching the order of calls to

 shadow.start();
 timer.start();

would solve the problem most of the time, but this sequence is not correct from the
logical standpoint. It does not make sense to let the shadow start working before we set
and start the timer. This sequence is problematic because the Shadow object gets to
execute longer than the designated deadline.

A possible solution is to treat the two calls as an atomic operation as follows:

 synchronized(this) {
 timer.start();
 shadow.start();
 }

In general, we want to avoid the synchronization operation in the code because

the operation introduces additional overhead that the system must be able to
accommodate.

6. TEST RESULTS

We ran the modified code (that calls shadow.start() before timer.start()) with

Metronome using different values for N (the number fronts), P (the pause time between
the creation of fronts), and D (the deadline). In this section we compare the results to

 9

those we obtained with Sun 2.0 RTGC. We list the test results first and discuss the
results at the end of the section.

Table 1. Pause time = 0 ms

Deadline (ms) N (# of fronts)
Sun Result

(# of timeouts)
IBM Result

(# of timeouts)

20 100 79 ~ 100 0 ~ 99
 200 200 0 ~ 196
 500 500 0 ~ 499
 1000 1000 0
 1500 OutOfMemory OutOfMemory

50 100 28 ~ 96 0 ~ 100
 200 142 ~ 200 0 ~ 200
 500 500 0 ~ 500
 1000 1000 0
 1500 OutOfMemory OutOfMemory

100 100 0 ~ 60 0 ~ 77
 200 35 ~ 200 0 ~ 189
 500 500 0 ~ 428
 1000 1000 0 ~ 34
 1500 OutOfMemory OutOfMemory

500 100 0 0
 200 0 0
 500 184 ~ 434 0
 1000 998 ~ 1000 0 ~ 660
 1500 OutOfMemory OutOfMemory

Table 2. Pause time = 5 ms

Deadline (ms) N (# of fronts)
Sun Result

(# of timeouts)
IBM Result

(# of timeouts)

20 100 0 0 ~ 9
 200 0 0
 500 0 0
 1000 0 0 ~ 5
 1500 OutOfMemory 0 ~ 2

50 100 0 0
 200 0 0
 500 0 0
 1000 0 0
 1500 OutOfMemory 0

500 100 0 0

 10

 200 0 0
 500 0 0
 1000 0 0
 1500 OutOfMemory 0 ~ 77

Table 3. Pause time = 50 ms

Deadline (ms)
N (# of fronts) Sun Result

(# of timeouts)
IBM Result

(# of timeouts)

20 100 0 0
 200 0 0
 500 0 0
 1000 0 0
 1500 1 ~ 5 0

50 100 0 0
 200 0 0
 500 0 0
 1000 0 0
 1500 0 0

500 100 0 0
 200 0 0
 500 0 0
 1000 0 0
 1500 0 0

Because any real-time thread can be interrupted by Metronome, we observe more

frequent garbage collection activities as expected. However this does not lead to worse
results (i.e., an increase in the number of timeouts). Even though the frequency of
garbage collection activities increases, the occurrence of timeouts actually decreases
under Metronome.

The data in Table 1 indicates that the number of timeouts reaches 100% for Sun’s

RTGC as the number of fronts increases for the same deadline; we reach the 100 percent
timeout ratio sooner for the shorter deadline. For example, when D = 20 ms, we reach
100% timeouts when N = 200, but if D = 50 ms, we will not reach the same 100 percent
timeouts until N = 500. When the deadline is shorter, the fronts do not have enough time
to finish the task, and since they cannot be interrupted by the garbage collector with a
lower priority, there will be fewer fronts we can run concurrently. With the shorter
deadline and larger number of fronts, the system workload increases, and thus, results in
more frequent timeouts.

Contrast these to the results of the IBM WebSphere Real Time. For the same set
of parameters, we see the number of timeouts varies. For example, when D = 20 and N =
200, Sun’s RTGC result is 100% timeouts, but Metronome’s result ranges from 0 to 196.

 11

The fronts will be interrupted by Metronome, but the interruption is short enough for the
fronts to complete the task before the deadline. So compared to Metronome, the
frequency of timeouts is much higher under Sun Java RTS, especially when the values
for the pause time and the deadline are small (e.g., P = 0 and D = 20).

Tables 2 and 3 show the comparative results for P = 5 ms and 50 ms, respectively.
As the values for the pause time increase, the differences between the two garbage
collectors disappear. The reason is simple. Longer pause time implies less workload, and
therefore, more “relaxed” time for the system to complete the given tasks. One marked
difference we see in Table 2 is the OutOfMemory exception when N = 1500 for Sun’s
RTGC, but no such exception for Metronome; this is again due to their core difference.
When there is a longer pause time (P = 5 ms), the incremental RTGC will have a chance
to collect garbage. In Table 3, we see that there are no OutOfMemory exceptions with
Sun’s RTGC. When the pause time is increased to 50 ms, the intervals between the
creations of fronts get long enough for the garbage collector to be triggered and reclaim
garbage.

7. DISCUSSIONS AND CONCLUSION

To study the adaptability of our proposed Shadow design pattern to different types
of real-time garbage collectors, we ran experiments with the IBM Metronome RTGC and
compared the results against those we collected from the experiments with the Sun Java
RTS 2.0. The results we obtained generally conform to our expectations. Although the
use of the Metronome RTGC resulted in a few timeouts, we needed more care in
producing the correct implementation of the design pattern with the Metronome as
illustrated by the anomaly described in Section 5.1.

Our preliminary results shows that the Shadow Design Pattern works correctly

under the two RTGCs. They work quite differently, so there is no generic algorithm
which we can use to determine the right values for P, D, and N. We have to find those
parameter values through empirical means for each type of RTGC. Note that the
comparison of the two RTGCs is done strictly within the context of our Shadow Design
Pattern. We do not make any claim on the relative merits of the types of RTGCs on the
general cases.

One major threat to the validity of our experiment is that we do not know the

relative speeds of the Virtural Machines (VMs); for example, our result would be skewed
if Sun’s VM ran significantly slower than the IBM’s. More experiments are needed to run
a benchmark suite such as the virtualization benchmark suite from Standard Performance
Evaluation Corporation (SPEC) on both VMs to obtain a baseline throughput figure and
make sure that timeouts are really caused by GC activity. Another threat is that the IBM
experiment was run on a dual core, which may give Metronome an unfair advantage over
Sun’s RTGC since Metronome can do parallel GC (and does so by default). We need to
re-run the experiments on comparable hardware platforms.

 12

8. ACKNOWLEDGMENTS

The authors thank the IBM Metronome team and the Oregon Linux Center for

their expert advice and allowing us to use their computing resources for running
experiments. The research reported in this article was funded in part by a grant from the
U.S. Missile Defense Agency. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S. Government.

9. REFERENCES

[1] Bollella, G., et al. Programming with non-heap memory in the real time
specification for Java. In Proceedings of the Conference on Object Oriented
Programming Systems Languages and Applications (Anaheim, CA, USA, 2003).
ACM Press, New York, NY, 2003, pp. 361–369.

[2] Dibble, P.C. The Real-Time Java Platform Programming, Prentice-Hall, 2002.

[3] Wells, A. Concurrent and Real-Time Programming in Java, John Wiley & Sons,
2004.

[4] Kwon, J., Wellings, A., and King, S. Ravenscar-Java: A high integrity profile for
real-time Java. In Proceedings of the 2002 joint ACM-ISCOPE Conference on
Java Grande JGI (Seattle, Washington, USA, November 2002). ACM Press, New
York, NY, 2002, pp. 131-140.

[5] Laukkanen, M. Real-time Java—Memory Management. Seminar on Real-time
Java, Department of Computer Science, University of Helsinki, April 2001.

[6] Pizlo, F., Fox, J., Holmes, D. Vitek, J. Real-time Java scoped memory: Design
patterns, semantics. In Proceedings of the IEEE International Symposium on
Object-oriented Real-Time Distributed Computing (Vienna, Austria, May 2004),
101-112.

[7] Potanin, A., Noble, J., Zhao, T., and Vitek, J. A High Integrity Profile for
Memory Safe Programming in Real-time Java. In Proceedings of the 3rd
Workshop on Java Technologies for Real-time and Embedded Systems (San
Diego, CA, USA, October 2005).

[8] Cook, T.S., Drusinsky, D., Michael, J.B., Otani, T.W., and Shing, M. Design of
Preliminary Experiments with the Sun Java Real-Time System, Technical Report
NPS-CS-06-010, Naval Postgraduate School, Monterey, CA, 2006.

[9] Otani, T.W., Auguston, M., Cook, T.S., Drusinsky, D., Michael, J. B., and Shing,
M. A Design Pattern for Using Non-Developmental Items in Real-Time Java. In
Proceedings of the 5th International Workshop on Java Technology for Real-time
and Embedded Systems (Vienna, Austria, September 2007), pp. 135-143.

 13

[10] Auguston, M., Cook, T.S., Drusinsky, D., Michael, J.B., Otani, T.W., and Shing,
M., Experiments with Sun Java Real-Time System - Part II, Technical Report
NPS-CS-07-005, Naval Postgraduate School, Monterey, CA, 2007.

[11] Bacon, D.F., Cheng, P., Rajan, V.T. The Metronome: A Simpler Approach to
Garbage Collection in Real-Time Systems. In Meersman, R., Tari, Z. (eds.)
Proceedings On The Move (OTM) Federated Conferences, OTM Workshops
2003. LNCS 2889, Springer, Berlin, 2003, pp. 466-478.

10. APPENDIX

In this appendix, we present the sketches of the Java code for our experiment.

• Control

 public void run() {
 for (int i = 0; i < repeatCnt; i++) {
 DataItem item = new DataItem(i);
 Front front = new Front(this, i, item);
 dataStore[i] = front;
 //other bookkeeping tasks
 }

 RelativeTime delay = new RelativeTime(50, 0);

 for (int i = 0; i < repeatCnt; i++) {
 dataStore[i].start();
 try {
 RealtimeThread.sleep(delay);
 } catch (InterruptedException e) {
 }
 }
 }

 public synchronized void workDone
 (int id, DataItem result) {
 dataStore[id] = null;
 //remove it, so it gets garbage collected

 //other bookkeeping tasks
 }

• Front
 public void run() {
 PriorityParameters scheduling
 = new PriorityParameters(

 14

 PriorityScheduler.instance().
 getMinPriority());

 shadow = new Shadow(this,dataItem, scheduling);

 DeadlineMissHandler timeoutHandler =
 new DeadlineMissHandler(this);
 timer = new OneShotTimer(new RelativeTime(

 controller.getDeadline(),0),
 timeOutHandler);
 timer.start();
 shadow.start();
 }

 public synchronized void reportFinal
 (DataItem result) {
 if (isActive) {
 isActive = false;
 timer.stop();

 //we got a full result from the shadow
 //so stop this OneShotTimer object

 timer = null;
 shadow = null;
 timeOutHandler = null;
 control.workDone(id, result);
 }
 }

 public synchronized void reportNominal() {
 if (isActive) {
 isActive = false;
 shadow.quit();

 //this kills the shadow by setting its
 //'isActive' to false.

 shadow = null;
 timer = null;
 timeOutHandler = null;
 control.workDone(id, nominalResult);
 }
 }

 15

 public synchronized void reportProgress
 (DataItem result) {
 //bookkeeping tasks
 }

• Shadow
 public void run() {

 while (isActive && i < 100) {
 //do work
 }
 front.reportFinal(result);
 }

• DeadlineMissHandler
 public void handleAsyncEvent() {
 front.reportNominal();
 }

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA

4. Mr. Richard Ritter
Missile Defense Agency
Washington, DC

5. COL Scott LeMay, USAF

Missile Defense Agency
Washington, DC

6. Mr. Michael Young

Missile Defense Agency
Washington, DC

7. Ms. Denise Spencer

Missile Defense Agency
Washington, DC

8. Mr. Steve Hill

Missile Defense Agency
Washington, DC

9. Mr. Jan Young

Missile Defense Agency
Washington, DC

10. Ms. Genell Hausauer

Missile Defense Agency
Washington, DC

 18

11. Mr. Wilson Varga
Missile Defense National Team
Crystal City, VA

12. Mr. Erik Stein

Missile Defense National Team
Crystal City, VA

13. Mr. Tim Trapp

Missile Defense National Team
Crystal City, VA

14. Dr. Butch Caffall

NASA IV&V Facility
Fairmont, WV

15. Dr. Doron Drusinsky

Naval Postgraduate School
Monterey, CA

16. Dr. Bret Michael

Naval Postgraduate School
Monterey, CA

17. Dr. Thomas Otani

Naval Postgraduate School
Monterey, CA

18. Dr. Man-Tak Shing

Naval Postgraduate School
Monterey, CA

19. Mr. Greg Porpora

IBM Federal Software

20. Dr. David Bacon
IBM T.J. Watson Research Center
Hawthorne, New York

21. Dr. Perry Cheng

IBM T.J. Watson Research Center
Hawthorne, New York

22. Mr. Theodore Tso

IBM Linux Technology Center

 19

Medford, Massachusetts

23. Mr. Paul McKenney

IBM Linux Technology Center
Medford, Massachusetts

24. Dr. Greg Bollella

Sun Microsystems Software
Palo Alto, CA

25. Mr. Jay Magnino

IBM

26. Mr. Fred Weindelmayer

Naval Surface Warfare Center
Dahlgren, VA

